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Abstract 
While traditional penetration testing methods have proven valuable in certain contexts, they are increasingly 

inadequate in addressing the complex, dynamic, and adaptive nature of modern cyber threats and 

vulnerabilities due to the increasing complexity of emerging technologies and products. The over-reliance on 

predefined toolkits, rigid checklists, and limited adaptability renders significant gaps in vulnerability discovery 

and exploitation, leaving organizations exposed to emerging and sophisticated attacks. 

In light of these shortcomings, the Adversarial Penetration Testing Model (APTM) seeks to overcome these 

limitations by introducing a mathematical and system-oriented framework that models goal-oriented 

adversarial simulations, enabling more intelligent, probabilistic, and adaptive strategies with dynamic feedback 

loops that better simulate the evolving nature of real-world adversaries and realistic approach to offensive 

security. 

1 Introduction 
Penetration testing has long been a cornerstone of 

cybersecurity practices, focusing on evaluating 

systems by simulating potential attacks to identify 

vulnerabilities before they can be exploited by 

adversaries. Traditional penetration testing is often 

carried out using a series of scripted procedures 

and tools in predefined methodologies. This 

process, though valuable, is limited in several 

significant ways, especially as cybersecurity threats 

evolve and organizations expand their 

infrastructure footprint by adopting and 

integrating new technologies which increases their 

attack surface. 

Early Work: The Emergence of Penetration 

Testing 

 
1 The term "Tiger Team" emerged in the 
1960s when the U.S. Air Force assembled 
small teams of experts to test the security and 
integrity of critical systems.  

Penetration testing in its early stages was heavily 

influenced by a military concept known as the Red 

Team and in certain scientific research 

environments was also known as Tiger Team12. 

The Red Team was tasked with simulating real-

world attacks against a defense structure to assess 

the readiness of the defending team. These 

exercises evolved into the modern practices of 

vulnerability assessments and penetration testing, 

wherein "ethical hackers" (often part of a security 

team) are tasked with identifying weaknesses in an 

organization’s defenses. 

By the late 1990s and early 2000s, the field of 

penetration testing became formalized with the 

creation of standardized methodologies and 

toolkits. These standardized tools, such as 

vulnerability scanners (i.e., Pingware, ISS Scanner, 

Nessus, NeXpose), vulnerability exploitation 

frameworks (e.g., Canvas, Metasploit), web 

application scanners (e.g., Burpsuite, ZAP) among 

2 Bellcore’s Security & Fraud group had an 
established Tiger Team in late 80’s - early 90’s 
which assisted commercial and government 
organizations with forensic analyses and 
penetration testing exercises. 
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others, formed the backbone of a structured, 

methodical approach to security testing. 

Penetration testers would follow pre-built 

playbooks, often working through vulnerability 

scanners, manual exploitation techniques, and 

simulated social engineering attacks. 

The Rise of Red Teaming and Offensive Security 

However, as cybersecurity threats became more 

sophisticated, the limitations of traditional 

penetration testing began to show. Static 

approaches relying on predefined scripts failed to 

replicate the complexity of real-world adversaries. 

In response, the concept of Red Teaming emerged 

as a more comprehensive and adversarial testing 

method. Red Teaming takes penetration testing a 

step further by incorporating real-time 

simulations, creative problem-solving, and testing 

for emerging vulnerabilities. Red Team 

engagements often simulate adversaries who are 

highly adaptive, using a range of attack vectors and 

focusing on how an adversary might think, plan, 

and adapt during an attack. 

Although Red Teaming improved the realism of 

adversary simulations, it has limitations in 

scalability, adaptability, and feedback mechanisms. 

Red teams could only operate within specific 

frameworks, and despite their creativity, the 

outcomes were still constrained by a relatively 

small set of predefined tactics. Additionally, Red 

Teams traditionally lacked the ability to evolve and 

adapt as real-time threats developed. 

The Need for a More Dynamic Model: The APTM 

As the landscape of cybersecurity continues to 

evolve with new attack vectors, advanced 

persistent threats (APTs), and increasingly 

sophisticated attackers, traditional approaches like 

static penetration testing and Red Teaming are 

beginning to fall short. Adversaries are no longer 

easily predictable; instead, they are adaptive, 

leveraging a wide array of tools and techniques 

that evolve dynamically over time. The ability to 

mimic this type of behavior is crucial for providing 

more robust security assessments. 

In traditional penetration testing, the focus is often 

on a series of deterministic actions based on 

known vulnerabilities, such as exploiting CVEs 

(Common Vulnerabilities and Exposures) or 

performing a set of predefined steps. However, 

these methods overlook the complexity of real-

world adversaries, who adapt based on the 

information they gather and the defenses they 

encounter. 

Thus, the need for a more advanced model that 

embraces not just deterministic (predefined) 

actions, but also non-deterministic (probabilistic 

and adaptive) methods, has become clear. This is 

where the Adversarial Penetration Testing 

Model (APTM) comes in. The APTM is a novel 

framework that blends deterministic and non-

deterministic strategies to simulate adversarial 

behavior in a more flexible and realistic way. 

The APTM introduces a formal mathematical 

structure, leveraging concepts from systems 

theory[2], game theory [10], and probabilistic 

decision-making [11], to model the adversarial 

penetration testing process. It moves beyond 

simply testing for known vulnerabilities to 

incorporating strategies that adapt to changing 

defenses, new attack paths, and evolving 

environmental factors. By integrating both 

deterministic and non-deterministic actions, the 

APTM allows for a more comprehensive, adaptable, 

and realistic testing environment that mirrors the 

unpredictable nature of real-world attacks. 

2 Traditional Penetration 

Testing: Limitations 
Traditional penetration testing (also known as 

"pen testing") has long been a standard 

methodology for identifying vulnerabilities within 

an organization's infrastructure. The primary goal 

of penetration testing is to simulate real-world 

attacks on systems, applications, or networks to 

identify weaknesses before they can be exploited 

by malicious actors. While effective in some 

contexts, traditional penetration testing has 

notable limitations that hinder its ability to fully 

replicate the behavior of real-world adversaries 

and adapt to the increasingly complex threat 

landscape. 

2.1 Over-Reliance on Predefined Toolkits 

Penetration testing often relies heavily on a 

combination of commercial and open-source tools, 

such as Nessus, Metasploit, and Burp Suite. These 

tools are preconfigured with known exploits, 

vulnerabilities, and attack patterns, which testers 

execute in a scripted or semi-scripted manner. 
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While this approach is useful for finding well-

documented vulnerabilities, it is inherently limited 

in the following ways: 

Known Exploits: Traditional penetration tests 

often focus on known exploits or CVEs (Common 

Vulnerabilities and Exposures), which are well-

documented and easy to replicate. However, as 

organizations update their systems and patch 

vulnerabilities, the effectiveness of these tools 

diminishes. Furthermore, new, zero-day 

vulnerabilities (those that have not been 

documented or publicly disclosed) are often 

outside the scope of traditional testing methods. 

Tool Limitations: Many of the tools used in 

traditional penetration testing operate within 

predefined, rigid frameworks. For example, a tool 

such as Metasploit may automatically execute an 

attack based on the available exploit modules, but 

it lacks the adaptive capabilities needed to respond 

to defenses in real-time. This reliance on 

predefined toolkits means that penetration testers 

are often confined to the capabilities and 

limitations of these tools, which may not account 

for novel or evolving attack strategies. 

Static Testing: These toolkits typically follow a 

scripted sequence of tests, making them ill-suited 

to replicate the complexity and unpredictability of 

real-world adversaries, who frequently adapt their 

strategies based on the environment they 

encounter. 

2.2 Checklists and Template-Driven 

Methodologies 

Traditional penetration testing often follows a 

checklist-driven approach, where testers are 

required to validate a fixed set of known 

vulnerabilities or configurations. This method has 

been the foundation for several penetration testing 

frameworks, including the OWASP Top 10, the 

PTES (Penetration Testing Execution Standard), 

and NIST guidelines. 

While checklists offer structure and ensure that 

fundamental security issues are covered, they are 

also highly limited in several ways: 

Inflexibility: Checklists enforce a rigid testing 

process that doesn’t allow for real-time flexibility 

or adaptation. They focus heavily on identifying 

known issues and vulnerabilities in a 

predetermined order. If an adversary were to 

discover an unknown vulnerability during an 

attack, it would be missed by a test that follows a 

fixed checklist. 

Lack of Contextualization: Traditional 

methodologies do not account for the dynamic 

nature of a network or system’s evolving threat 

landscape. For example, they may fail to recognize 

vulnerabilities that arise as the result of complex 

system configurations, or changes in the security 

posture due to patching, misconfigurations, or 

human error. 

Failure to Simulate Evolving Attacks: Real-world 

adversaries often change their tactics, techniques, 

and procedures (TTPs) based on the evolving 

defenses they encounter. A checklist-driven 

approach does not effectively simulate the dynamic 

nature of a sophisticated adversary who may 

switch strategies mid-attack to bypass detection or 

exploit an unanticipated vulnerability. 

2.3 Poor Adaptability and Real-Time 

Feedback 

Traditional penetration testing often lacks 

adaptability, meaning that once an assessment is 

conducted, there is little to no follow-up or 

iterative refinement based on the results. This is 

problematic because real-world adversaries are 

constantly adjusting their attack strategies based 

on the defenses they face. 

Limited Learning: Traditional penetration testing 

does not include a feedback loop that allows the 

penetration tester to adjust tactics based on the 

environment or system's responses. Once an action 

is executed (such as exploiting a vulnerability), 

testers typically do not reassess or modify their 

approach dynamically. In contrast, real adversaries 

gather information during their attacks and adjust 

their strategies accordingly. 

Post-Test Evaluation: After a penetration test, 

reports are typically produced that list the 

vulnerabilities found and offer recommendations 

for mitigation. However, this post-test evaluation 

does not support real-time adaptations or learning 

from the environment. Furthermore, without a 

continuous feedback loop, the lessons learned 

during the test may not be applied to future 

engagements. 

Missed Opportunities for Simulating Real-

World Attacks: In a dynamic environment, 
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attackers may change tactics based on unforeseen 

defensive measures, such as the activation of an 

Intrusion Detection System (IDS) or the detection 

of unusual network traffic patterns. Traditional 

testing often fails to simulate these real-time, 

adaptive responses. 

2.4 Limited Coverage of Complex and 

Unknown Attack Paths 

Traditional penetration testing primarily focuses 

on testing systems in isolation, often overlooking 

the interconnections and interactions between 

components. In the modern threat landscape, 

attackers often exploit vulnerabilities that are not 

isolated to a single system or device, but rather 

span across networks, applications, and user 

behaviors. 

Lateral Movement: Attackers rarely confine their 

actions to a single compromised machine. Instead, 

they move laterally across the network, looking for 

other systems to compromise and leveraging 

privileges from one system to escalate their access 

on others. Traditional penetration tests often miss 

these complex attack paths due to their narrow 

scope, which typically focuses on individual 

systems or components. 

Blind Spots in Network Topology: In many cases, 

traditional penetration tests miss vulnerabilities in 

network design, firewall configurations, or 

misconfigurations in cloud infrastructures. These 

blind spots are often overlooked by traditional 

methods that focus on only testing visible, 

accessible systems. Attackers who can discover 

hidden or unmonitored systems, misconfigured 

access points, or poorly secured APIs often have 

greater success than what traditional penetration 

testing might predict. 

Human Factors: Traditional penetration testing 

may also underplay the role of human factors in 

security. Social engineering, phishing attacks, and 

other human-driven attack vectors are often 

glossed over in favor of automated, tool-based 

exploitation. However, modern adversaries 

recognize the importance of human targets and 

may prioritize social engineering tactics to bypass 

technical defenses. Traditional penetration tests 

are often limited in their ability to evaluate these 

non-technical attack vectors effectively. 

2.5 Inefficient Resource Allocation 

Traditional penetration testing can be resource-

intensive, both in terms of time and personnel. 

Given the manual nature of the process, it can take 

several days, or even weeks, to complete a 

thorough assessment, especially when testers are 

tasked with simulating multiple attack vectors and 

evaluating defenses. 

Time-Consuming: Penetration testers often spend 

significant amounts of time manually verifying 

vulnerabilities, running exploits, and documenting 

findings. The slow pace of traditional testing means 

that attackers may already have adapted or found 

new attack paths by the time the test results are 

delivered. 

High Costs: Traditional penetration testing is often 

expensive due to the manpower required and the 

high level of expertise needed. For organizations 

with limited resources, this can be a barrier to 

regular security assessments. 

3 APTM: The Adversarial 

Penetration Testing Model 
The Adversarial Penetration Testing Model (APTM) 

introduces a paradigm shift in the way penetration 

testing is conducted, moving beyond the traditional 

framework that relies on static checklists, scripts, 

and predictable actions. It incorporates 

mathematical models, probabilistic decision-

making, and real-time adaptation to assess security 

from a more holistic, intelligent perspective. The 

model incorporates both deterministic and non-

deterministic strategies, as well as adaptive 

mechanisms to replicate the dynamic and 

unpredictable nature of real-world attacks. By 

adopting formal mathematical foundations and a 

systems theory approach, APTM allows for more 

intelligent, feedback-driven, and probabilistically-

informed penetration testing. Unlike traditional 

penetration testing, which typically relies on static, 

checklist-driven methods, the APTM offers a more 

dynamic and adaptive approach, enabling the 

simulation of a broader range of attack scenarios 

and vulnerabilities. It incorporates mathematical 

models, probabilistic decision-making, and real-

time adaptation to assess security from a more 

holistic, intelligent perspective.  

The core of APTM lies in its ability to model and 

simulate an adversarial environment where the 
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goal is to maximize success while minimizing costs, 

time, and resources. Through a flexible system, 

APTM enables penetration testers to simulate 

realistic, evolving attack paths and provides a 

framework for both automated and human-driven 

offensive security strategies. 

3.1 Deterministic Penetration Testing 

Techniques 

Deterministic penetration testing techniques are 

characterized by actions with predictable 

outcomes, typically leveraging known 

vulnerabilities or following predefined procedures. 

These methods focus on well-documented exploits 

and configurations where success is often binary if 

the necessary preconditions are met. Examples of 

such techniques include the exploitation of known 

Common Vulnerabilities and Exposures (CVEs), 

such as the infamous EternalBlue or Log4Shell 

vulnerabilities, or specific exploits like targeting 

CVE-2021-34527. Standard reconnaissance steps 

like port scanning using tools such as Nmap also 

fall into this category. Furthermore, deterministic 

techniques encompass password cracking against 

known accounts or using standard wordlists and 

achieving privilege escalation by taking advantage 

of well-understood system misconfigurations. 

 

3.2 Non-Deterministic Penetration Testing 

Techniques 

While deterministic penetration testing techniques 

focus on predictable outcomes from known 

vulnerabilities, non-deterministic approaches 

embrace uncertainty and probabilistic results to 

better simulate the adaptive nature of real-world 

adversaries. These techniques are crucial for 

exploring unknown system states, dynamic 

environmental factors, and human elements, which 

often lead to vulnerabilities that static, predefined 

methods might miss. Non-deterministic actions, 

therefore, involve strategies with probabilistic 

outcomes, such as phishing attempts, fuzzing for 

zero-day vulnerabilities, hardware glitching, social 

engineering, or navigating unmapped network 

topologies, reflecting a more realistic and 

comprehensive approach to offensive security 

assessments. 

 

 

Figure 1 Non-Deterministic Penetration Testing Techniques Categorization  Examples 

  

Examples of the Human-Focused / Social 

Engineering techniques include Phishing emails 

(varying success based on user awareness and 

email filtering), Vishing (or Voice Phishing, 
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attempts to manipulate targets over the phone), 

Physical Tailgating / Badge Cloning (success 

depends on human factors and physical security), 

or Impersonation / Pretexting (role-based 

deception to gain access or information). 

For application , service and network protocols 

attack techniques may include, Fuzzing, Zero-Day 

Hunting (Reverse engineering or code auditing to 

find new, undocumented flaws), Protocol Anomaly 

Injection (generating malformed or unexpected 

data to observe system reactions) or  Timing 

Attacks (exploit time variations in system 

responses.) 

Examples of Network Exploration & Lateral 

Movement activities include ARP Spoofing / 

Poisoning (dependent on network topology and 

defenses), Credential Guessing without known valid 

inputs (e.g., brute-force attempts across multiple 

services), SMB Relay or NTLM Downgrade Attacks 

(success varies with system configurations), or 

DNS Rebinding or Cache Poisoning (relies on 

browser behavior, caching layers, and timing). 

The Cloud & API attack techniques include IAM 

Privilege Escalation (e.g. brute force), using 

misconfigured trust relationships in cloud 

environments, API Abuse (e.g., undocumented 

endpoints) which requires probing and guessing 

undocumented API routes or parameters. 

The Infrastructure Targeting techniques may 

include, Blind SQL Injection, requires trial-and-

error inference due to lack of direct feedback, 

Command Injection in Obscure Inputs (e.g., testing 

headers, fields, or metadata often overlooked) and 

File Upload Bypass Attempts (circumventing MIME 

type filters or file extension blocks).  

Examples of Adversarial Machine Learning / AI 

attack techniques include Model Evasion / Input 

Manipulation by targeting AI systems with 

adversarial input samples [6]  or Training Data 

Poisoning, altering model behavior via controlled 

input over time [3]. 

3.3 Formalization of the APTM 

At the heart of APTM is a formal mathematical 

structure (M) that models the penetration testing 

process as a 5-tuple M=(S,A,T,R,γ). This framework 

is inspired by decision-making models[1] and game 

theory [12], with each component representing a 

key aspect of the adversarial system. 

The formal definition of the APTM represents the 

key components necessary for simulating an 

adversarial penetration testing approach: 

 

Where: 

S (States): The set of possible states representing 

the system at various points (e.g., "User access 

gained", "Firewall bypassed"). These states 

represent different configurations of the 

environment or target systems, such as 

compromised or un-compromised system 

configurations, firewall statuses, active services, or 

the position of an attacker within the network. 

A (Actions): The set of possible actions an agent 

(attacker) can take. These are divided into: 

• AD: Deterministic actions with known 

outcomes, such as exploiting a well-

documented vulnerability (e.g., exploiting 

a known CVE). 

• AN: Non-deterministic actions with 

probabilistic outcomes, such as phishing 

attempts, social engineering, or lateral 

movement within an unknown network 

topology. 

A = AD ∪ AN 

T (Transitions): The transition probability function 

T, which represents the probability of moving from 

one state to another given a specific action. The 

transition function is defined as: 

T : S × A × S → [0,1] 

The transition probability function defines how 

likely is to move from one state s to another state 

s′, considering the action A taken by the agent. the 

agent. 

R (Rewards): The reward function R, which assigns 

a real number to each state in the environment 

based on how advantageous that state is relative to 
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the agent’s goal. In the context of penetration 

testing, the reward might represent the degree to 

which a goal (e.g., gaining admin access or 

exfiltrating proprietary data) has been achieved: 

𝑹 ∶ 𝑺 → ℝ 

Positive rewards indicate progress towards 

adversarial goals, while negative rewards may 

represent wasted resources or detection of attack 

activity and thus a penalty. 

γ: The discount factor, which reflects the agent’s 

preference for immediate versus long-term 

rewards. A value closer to 1 indicates a longer-term 

view, where the agent is more willing to sacrifice 

short-term gains for long-term objectives. Discount 

factor, weighting long-term rewards: 

𝛾 ∈ [0,1] 

Together, these components form the foundation of 

a formal model that helps characterize the 

decision-making process in adversarial penetration 

testing. They also facilitate a structured approach 

to evaluating potential attack paths, prioritizing 

actions, and iterating strategies. This mirrors a 

Markov Decision Process (MDP) [13] for 

deterministic actions but incorporates Partially 

Observable MDP (POMDP)[9] when uncertainty 

is introduced (non-deterministic attacks or 

unknown system state).  

 

3.4 Environment (E)  

The Environment (E) represents the dynamic, 

multi-layered digital ecosystem in which the 

adversarial agent (the red team) operates. The 

environment serves as both the target of the 

evaluation and the contextual space where all 

interactions, transitions, and strategic evaluations 

occur. Unlike simplistic threat models, APTM 

defines the environment with fine-grained 

granularity and system-level awareness. It 

encapsulates not just technical infrastructure, but it 

can also incorporate human, behavioral, and 

policy-driven variables that influence the outcomes 

of both deterministic and non-deterministic 

actions. This includes the target systems, the 

defenses in place, and the various points of 

interaction available to the agent.  

The following illustration provides an example of a 

typical target Environment but more complex 

environments can be represented such as an 

industrial controls network or communications 

network with signaling plane, partner 

interconnections and roaming interfaces or a 

product comprised by hardware, software 

components, network interfaces, API’s etc.  
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Figure 2 Target Environment Layers 

• Infrastructure: Represents the physical 

and virtual resources of the system being 

evaluated, such as servers, network 

devices, workstations, cloud resources, 

and databases. The complexity and 

configuration of these resources will 

influence the agent's strategies. Note that 

system can also entail a product, 

comprised by various components and 

APTM is applied to verify and measure its 

security posture.  

• Defensive Measures: This includes the 

security mechanisms designed to thwart 

attacks, such as firewalls, intrusion 

detection/prevention systems (IDS/IPS), 

endpoint detection and response (EDR) 

tools, network segmentation, and 

encryption. Furthermore, security 

mechanisms of a system representing a 

product may include, file-permissions,  

Mandatory Access Control (MAC), SMEP 

(Supervisor Mode Access Protection) and 

SMAP (Supervisor Mode Address 

Protection) to prevent attackers from 

executing user-space code.  These 

defensive measures provide resistance to 

the agent’s actions and may dynamically 

adapt over time, which is modeled in 

APTM through the feedback loop. 

• Access Points: These are the potential 

vectors through which the agent can 

attempt to infiltrate the system. Access 

points could include exposed services, 

open ports, misconfigurations, APIs, or 

unpatched vulnerabilities that the agent 

can exploit to gain a foothold. 

• Human Layer: This refers to the social 

engineering aspect of the environment, 

such as employees and user behavior. 

Social engineering tactics like phishing, 

pretexting, and baiting can be used to 

manipulate individuals into unwittingly 

assisting the agent in gaining access to the 

system. This layer adds an unpredictable 

and dynamic element to the environment. 

The environment (E) is formalized as a context-

sensitive structure: 

E= {I, A , S, H, P} 
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Where I is the infrastructure configuration,  A the 

active applications and exposed services, S 

represents the security controls in place, H the 

human actors and behavior profiles and P the 

organizational policies.  Each of these can change 

during the course of a penetration test (e.g., 

detected events might activate IDS, generate logs 

and alerts, enhance firewall filtering and/or alert 

SOC teams and consequently altering S in mid-

operation). Thus, in the APTM model, the 

environment is not considered static since it can 

react to agent actions through various reactive 

controls including, alerts and Logging (e.g., system 

violations or device tamper resistant sensor 

activation), adaptive defense (e.g., Supervisor Mode 

Access Protection, auto-scaling WAF rules), 

lockouts or account suspensions and trigger 

incident response (e.g., endpoint isolation). 

This introduces real-time feedback, enabling the 

agent to learn from failed or successful actions via 

the feedback loop Λ, creating a partially 

observable and adaptive environment. The 

richness of the environment determines how 

closely APTM mimics real-world adversaries. A 

robust model includes a probabilistic modeling of 

human reactions., temporal elements (e.g., time of 

day affects access or user behavior), environmental 

noise (e.g., legitimate traffic, benign alerts) along 

with Unknown unknowns; elements the agent has 

no prior knowledge of, necessitating exploration. 

The environment directly influences, the choice of 

actions (what’s possible or worth attempting), the 

success of actions (what defenses are 

encountered), the strategy (e.g., stealthy evasion 

vs. brute-force escalation) and learning (how 

agent policies adapt based on environmental 

feedback). 

 

3.5 Agent (A) 

The Agent (A) represents the adversary navigating 

the environment to achieve specific goals, such as 

data exfiltration, privilege escalation, or persistent 

access. The agent is the intelligent, goal-directed 

entity executing both deterministic and non-

deterministic actions based on a strategic policy 

and feedback from the environment. The agent 

could be a human (red team operator), an 

automated tool (scripted system or tool), or an 

AI/ML-driven agent that learns and adapts its 

strategies over time. 

This agent can be instantiated as a human red team 

operator, an automated script-based attack system, 

or more powerfully, an AI/ML-driven autonomous 

attacker An agent in APTM is defined by three core 

traits: 

i. Knowledge Base (K): Represents the 

information the agent has about the 

environment, such as system 

configurations, previously discovered 

vulnerabilities, and known defenses. In 

the case of AI agents, this knowledge base 

is continually updated based on feedback 

and previous actions. This represents the 

information the agent has about (a) the 

environment state S, (b) known 

vulnerabilities (c) toolsets and 

capabilities and (d) historical outcomes 

(prior successes/failures). The knowledge 

base evolves over time as the agent 

performs reconnaissance or receives 

feedback from executed actions. 

 

ii. Strategy (Σ): The strategy or plan that 

the agent follows, which governs which 

actions it selects based on the current 

state of the system. A strategy might 

involve deterministic actions (e.g., 

exploiting known vulnerabilities) or non-

deterministic actions (e.g., protocol 

fuzzing to identify 0-day vulnerabilities, 

trying a new social engineering tactic). 

This is the high-level decision framework 

used to choose actions based on (a)  rule-

based heuristics, (b) cost-reward 

balancing, (c) risk tolerance thresholds, 

(d) goal prioritization. In deterministic 

scenarios, the strategy is simple and rule-

based Σᴰ (deterministic planning tree, 

knowledge-driven). In non-deterministic 

cases, the strategy Σᴺ incorporates 

probability and learning, requiring 

adaptive planning (e.g., probabilistic 

sampling, fuzzing, ML, intuition, 

creativity). 

 

iii. Adaptation Loop (Λ): This loop 

represents the agent’s ability to adapt its 

strategy based on feedback from the 

environment. After each action, the agent 

assesses the outcome and updates its 

knowledge base accordingly. This 

continuous learning process allows the 
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agent to improve its chances of success 

over time.  The feedback mechanism that 

modifies behavior based on (a) action 

outcomes (success/failure), (b) changes 

in environment, and (c) updates in 

knowledge base.  The adaptation loop 

enables learning-based evolution, where 

the agent refines its strategy over time to 

optimize future decisions. 

 

The agent A is formally represented as:  

A = ( K, Σ, Λ ) 

Where,  K is the Evolving knowledge base, Σ is the 

strategy function determining action a ∈ A given 

current state s ∈ S  and Λ (lambda) learning and 

adaptation operator, mapping observations to 

policy updates. 

Types of Agents include, but not limited to: 

• Human Pen Tester / Red Teamer  

o Intuition-based decision-making 

o Guided by experience and real-

time interpretation 

o Can simulate irrational or 

unpredictable behavior 

o Learning is tacit and slow but 

creative 

• Scripted/Automated Agents 

o Predefined action chains 

o Linear or tree-like decision 

paths 

o Quick execution but limited 

adaptability 

o Can replicate deterministic 

behavior with precision 

• AI/ML Agents 

o Reinforcement learning, Q-

learning, or Bayesian inference 

o Probabilistic decision-making 

under uncertainty 

o Real-time policy optimization 

o Capable of modeling stealth, 

deception, and complex reward 

optimization 

These agents represent varying levels of autonomy, 

risk modeling, and adaptability, aligning with 

different adversary profiles. Given a state s ∈ S, the 

agent queries the knowledge base K for known 

attributes, (b) applies its strategy Σ to compute 

optimal action 𝛼∗∈ A, (c) executes a∗, 

transitioning to state s′ with probability T(s,a,s′) 

and (d) observes feedback and updates K and Σ 

using Λ.  Furthermore, Agents may be designed 

with different cognitive and behavioral profiles 

including Aggressive (i.e., prioritize high-reward 

actions, even if risky, Cautious (i.e., Favor stealth 

and low-risk actions, even if slower) or 

Opportunistic (i.e., shift dynamically based on 

environment state and learned cues). This enables 

simulation of realistic threat actors with distinct 

behavioral patterns, enhancing the training value 

for blue teams and automated defense systems. 

And the agent can be designed to operate in a 

continuous loop using action categories such as 

Sense (observe the current state), Plan (select 

action), Act (execute the action) and Learn 

(evaluate outcome and refine policy).  This loop 

mirrors the traditional "OODA" (Observe, Orient, 

Decide, Act) cycle [5], applied in a formal 

mathematical context. 

 

3.6 Deterministic vs Non-Deterministic 

Actions 

In APTM, every action 𝛼 ∈ A taken from a state 𝑠 ∈ 

𝑺  has a certain probability of success which is 

defined as 

𝑃𝑠𝑢𝑐𝑐𝑒𝑠𝑠(𝛼, 𝑠) = Pr [𝑠′|𝑠, 𝑎] 

These actions fall into two categories based on 

predictability and outcome certainty, Deterministic 

and Non-Deterministic actions. This is a key feature 

distinguishing deterministic from non-

deterministic penetration testing strategies. 

Actions  (α) represent the discrete set of operations 

that an agent may execute within a given state s ∈ S 

in order to transition to a new state s′ ∈ S.  Each 

action is selected based on strategic considerations, 

environmental conditions, and probabilistic 

outcomes.  

Ρ(𝛼 | 𝑠)

=  {

    
   1,                     success if 𝑎 ∈ 𝐴𝐷 and preconditions are met       
   0 < 𝑝 < 1,    success if 𝑎 ∈ 𝐴𝑁                                                            

0,                     failure if action is infeasible fromm state 𝑠       

 

 

• AD : Set of deterministic actions. 
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• AN : Set of non-deterministic 

actions. 

• 𝑝:  Probability derived from 

environmental uncertainty, agent 

confidence, past performance, etc. 

Deterministic actions (𝜶𝑫) yield predictable 

outcomes when preconditions are satisfied  

(known inputs yield predictable outputs).  Their 

success is binary (either successful or not) and 

typically based on known information. If an 

attacker attempts to exploit a well-documented 

vulnerability in a system (such as an outdated 

version of a web server with a known exploit), the 

outcome is typically deterministic, as long as the 

preconditions (e.g., vulnerable version) are met. 

Examples of deterministic attacks include, 

exploitation of known CVEs (e.g., EternalBlue, 

Log4Shell), port scanning, password cracking, or 

privilege escalation via misconfigurations. The 

probability of success for deterministic actions is 

characterized as 𝑃 (𝛼𝐷  | 𝑠) = 1, given state 𝑠  

assuming conditions are fully met (or with low 

variability in outcome), they are often repeatable 

across environments and are frequently targeted 

early in attack paths. 

Non-deterministic actions (𝜶𝑵) have uncertain 

or probabilistic outcomes due to dynamic 

environmental factors, human elements, or 

unknowns in the system state (i.e., buffer 

overflow/underflow, race conditions). Examples 

activities, include Phishing (human variability in 

response), Fuzzing/Zero-Day discovery, brute force 

against unknowns, Social Engineering (e.g., vishing, 

pretexting) or propagation in unmapped networks 

(e.g., lateral movement through undocumented 

infrastructure). 

𝑃 (𝛼𝑁|𝑠) = 𝑓(𝐾, Σ, 𝑠, 𝐸) 

The variability of success of non-deterministic 

actions is  0 < 𝑃 (𝛼𝑁  |𝑠) < 1,  (α ∈  𝐴𝑁) where the 

outcome depends on real-time feedback and 

environmental dynamics, the risk-reward tradeoff 

is often higher and requires adaptive learning and 

strategic tuning. The result is dependent on the 

agent’s Knowledge base (K), its strategy function 

(Σ) and the environment (E) state. Examples of 

such actions include: 

Protocol Fuzzing: malformed protocol messages 

can be interpreted incorrectly by the receiving 

service and introduce unexpected behavior 

resulting in service or system disruption or 

memory overflow and system compromise. Thus, 

the unexpected behavior makes the results 

probabilistic. 

Phishing Attacks: The success of a phishing 

attempt is not guaranteed and depends on various 

factors such as the context, the skills of the 

attacker, and the vigilance of the target. 

Social Engineering: An attempt to manipulate a 

system administrator into divulging sensitive 

information may succeed or fail based on the social 

environment. 

 

Table 1 Action Example Comparison 

Action Type Predictability Cost Reward Adaptability 
Exploit CVE-2021-34527 Deterministic High Low Medium Low 
Phishing Campaign Non-Deterministic Medium Medium High High 
Nmap Scan Deterministic High Low Low Low 
Zero-Day Discovery Non-Deterministic Low High Very High Medium 

 

3.7 Feedback loop and adaptive learning 

In traditional penetration testing, once a test is 

completed, the feedback is typically provided as a 

report, which may contain vulnerabilities and 

recommendations for remediation. However, this 

process is static and does not allow for the 

continuous adaptation that occurs in real-world 

adversaries. The feedback loop in the APTM is an 

essential component of its dynamic nature. After 

each action, the agent assesses the environment's 

response, whether it was successful or whether the 

system has detected or mitigated the 

corresponding attack. This feedback is used to 

adjust the agent's knowledge base and strategy and 

is formally represented as: 
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Λ𝑡 = 𝑈𝑝𝑑𝑎𝑡𝑒 (𝑃𝑠𝑢𝑐𝑐𝑒𝑠𝑠  , 𝑅, 𝐶, 𝑠𝑡, 𝛼𝑡) 

The feedback operator Λ can be implemented using 

various learning mechanisms such as 

Reinforcement Learning (RL) or Bayesian learning 

to maximize the expected cumulative reward over 

time [8]. The update function applied at a time step 

t modifies the agent’s understanding of action 

outcomes and incorporates the observed results of 

an action and adjusts future behavior (e.g., 

improves probability estimates, adjusts cost 

evaluations, updates strategies) to facilitate the 

selection policy π and optimize the agent’s learning 

based on which actions are most effective and 

under which conditions. The action success 

probability 𝑃𝑠𝑢𝑐𝑐𝑒𝑠𝑠 is the agent’s estimate of how 

likely action 𝛼 is to succeed in state s and helps 

determine whether an action is worth attempting 

based on historical data and current state. The 

𝑃𝑠𝑢𝑐𝑐𝑒𝑠𝑠 function can be initialized statically or 

learned dynamically through Bayesian inference, 

reinforcement learning, or other probabilistic 

methods.   

The learning loop enables agents to identify high-

value low-cost actions, reduce ineffective or risky 

behaviors and shift toward strategies with higher 

observed success. The update adjusts the action 

probabilities, accounting for the outcome of the 

action taken.  If a certain attack path was detected, 

the agent may alter its strategy and choose less 

detectable actions. If a defense mechanism was 

bypassed, the agent may refine its approach to 

increase the chances of future success. For 

Reinforcement Learning update (Q-Learning) [14]  

we associate each state-action pair with a Q-Value: 

𝑄(𝑠, 𝛼) ← 𝑄(𝑠, 𝛼) + 𝜆 [𝑅(𝑠′)

+  𝛾 max
𝛼′

𝑄 (𝑠′, 𝛼′) − 𝑄(𝑠, 𝛼)] 

Where 𝜆 is the learning rate, 𝛾 is the discount 

factor, 𝑅(𝑠′) is the reward received after 

transitioning to state 𝑠′. This allows the agent to 

learn the expected reward for actions and optimize 

overtime. To select the most optimal action 𝛼 that 

achieves the best score for a given state 𝛼  we use: 

𝜋∗(𝑠) = 𝑎𝑟𝑔 max
𝑎

𝑄(𝑠, 𝛼) 

For example, in the context of penetration testing 

we may have three possible actions, 𝛼1, 𝛼2, 𝛼3 with 

expected outcomes: 

𝔼[𝑅(𝛼1)] = 5 

𝔼[𝑅(𝛼2)] = 12 

𝔼[𝑅(𝛼3)] = 9 

Then  

𝑎𝑟𝑔 max
𝑎 ∈(𝛼1,𝛼2,𝛼3) 

𝐸[𝑅(𝛼)] = 𝛼2 

Because 𝛼2 has the highest expected reward. In the 

APTM agents select the optimal policy 𝜋∗ that 

maximizes expected cumulative reward while 

minimizing cost and argmax finds the best such 

policy: 

𝜋∗ = arg max
𝜋

𝔼 [∑ 𝛾𝑡

𝛵

𝑡=0

 (𝑅(𝑠𝑡) − 𝐶(𝛼𝑡))]  

Where 𝑅(𝑠𝑡) is the reward for reaching a high-

value state, and 𝑠𝑡is a snapshot of the environment 

at the current step (e.g., port 445 is accessible, 

credentials for admin obtained or have local root 

access). The  𝐶(𝛼𝑡) function represents the cost of 

taking action 𝛼𝑡 (e.g., run CVE-2021-34527 exploit 

or attempt credential reuse on a different system) 

at time t, which helps the agent optimize its actions 

based on the observed outcomes, and γ represents 

the discount factor balancing short-term vs. long-

term goals. This models intelligent agents that 

weigh potential gain against action costs and risks.  

Every action incurs a cost 𝐂 measured in terms of, 

time 𝐭 (duration to execute), resources 𝐫 (e.g., CPU 

usage, bandwidth, system calls, external services), 

and stealth risk 𝜹 (likelihood of detection), defined 

as the cost function: 

𝐶(𝛼) = 𝑡 (𝛼) + 𝑟(𝛼) +  𝛿(𝑎) 

Where 𝑡 (𝛼) is the time cost, 𝑟(𝛼) the resource cost 

and 𝛿(𝑎) the stealth or detection penalty. 

Over time, the agent develops a robust strategy 

𝜋∗which dynamically selects the best action based 

on both deterministic logic and learned 

probabilities, allowing for efficient and realistic 

adversarial simulation. This feedback-driven 

approach enables red teams and autonomous 

agents to emulate real attackers who adapt, learn, 

and re-plan based on environmental resistance and 

behavioral signals. 
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4 Example: The Silent Slice, 

Penetrating a Private 5G 

Network 
In this example scenario we apply the APTM to 

intercept sensitive sensor data in from a private 5G 

network by simulating a sophisticated, adaptive 

adversary. 

 

Figure 3 APTM applied during Private 5G Penetration Testing scenario 

 

Phase 1: Breaching the Perimeter (S0 → S1) 

Starting from an external position with no access 

(State S0), the agent initiates its campaign. An 

initial non-deterministic action (AN) involves 

identifying exposed APIs related to the 5G 

network's edge components; this yields no 

immediate entry but provides valuable 

environmental feedback. Adapting its strategy, the 

agent then executes a deterministic action (AD), 

leveraging Open Source Intelligence (OSINT) to 

identify and exploit a known vulnerability in an 

internet-facing staging server within the target 

infrastructure. This grants the first crucial foothold, 

transitioning the agent to State S1: IT Foothold 

(Staging Server Compromised). The cost (C) for 

this initial breach is moderate, with a medium 

probability of success (P_success). 

Phase 2: From IT to the 5G Core's Edge (S1 → 

S2) 

Now inside the IT network, the agent performs 

deterministic scanning (AD) of the Operations & 

Maintenance (O&M) segment, to which the 

compromised server has unintended access. This 

reveals the presence of key 5G Network Functions 

(NFs). The focus then shifts to a critical non-

deterministic action (AN), protocol fuzzing against 

the Network Repository Function (NRF). The NRF 

is vital for service discovery within the 5G core. 

This fuzzing campaign is resource-intensive (high 
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Cost) with a low initial probability of success. 

However, the APTM's feedback loop is key; the 

agent meticulously tunes its fuzzing parameters 

based on the NRF's responses, eventually 

triggering an unexpected behavior, an anomaly 

that doesn't crash the NRF but indicates a subtle 

flaw. This marks the transition to State S2: NRF 

Anomaly Identified. 

Phase 3: Leveraging Leaks and Targeting the 

User Plane (S2 → S3 → S4) 

The NRF anomaly, upon closer analysis (a 

deterministic action, AD), reveals a minor 

information leak: internal configuration details, 

including identifiers for User Plane Functions 

(UPFs) associated with specific network slices, 

particularly the one handling sensor data. This 

valuable intelligence propels the agent to State S3: 

UPF for Sensor Slice Identified. The cost for this 

analysis is low, and success is high given the prior 

discovery. 

The agent initially attempts a non-deterministic 

action (AN): trying to manipulate network slice 

information or hop between slices based on the 

NRF leak. This proves unsuccessful but provides 

further environmental feedback. Adapting, the 

agent now focuses on the identified UPF and 

executes a deterministic action (AD): exploiting a 

known, unpatched CVE specific to that UPF model. 

This CVE allows a bypass of certain filtering rules 

when initiated from a trusted internal source 

(which the agent now emulates from the 

compromised IT segment). This targeted exploit 

leads to State S4: Partial UPF Bypass Achieved, 

with a moderate cost and probability of success. 

Phase 4: Achieving the Objective (S4 → S5) 

With the UPF partially bypassed, the agent 

executes its final set of deterministic actions (AD), 

redirecting a portion of the traffic flowing through 

the compromised UPF. This allows the interception 

of telemetry data from the targeted sensor network 

slice. The cost is low, and success is high, 

culminating in State S5: Sensitive Sensor Data 

Intercepted. The primary objective of the 

penetration test is achieved. 

Throughout this simulated attack, each action 

carried a variable probability of detection 

(P_detect), which, if triggered, would have shifted 

the agent to State S_DETECTED. The APTM 

framework allowed for this dynamic interplay of 

deterministic exploitation of knowns and non-

deterministic probing of unknowns, guided by 

continuous feedback and adaptation, providing a 

far deeper understanding of the private 5G 

network's vulnerabilities than a traditional test 

could offer.  

5 Conclusion 
Penetration testing, as traditionally practiced, 

relies on static methods, predefined checklists, and 

predictable tools. These approaches, while effective 

in some cases, often fail to account for the dynamic 

nature of modern cybersecurity threats. 

Traditional methods typically rely on well-

documented exploits and predictable outcomes, 

limiting the adaptability and efficiency required to 

simulate intelligent adversaries. This static nature 

of penetration testing leaves security teams 

vulnerable to evolving threats and new attack 

vectors. The Adversarial Penetration Testing Model 

(APTM) offers a transformative shift in this 

paradigm by incorporating both deterministic and 

non-deterministic strategies into the penetration 

testing process. By integrating mathematical 

modeling, feedback loops, and adaptive learning, 

APTM redefines how penetration tests are 

executed and evaluated. The model allows for more 

realistic and effective simulations of adversaries by 

combining predictable, scripted exploits with 

probabilistic, adaptive strategies. This hybrid 

approach better mimics real-world adversarial 

behavior and provides security teams with more 

comprehensive and accurate assessments of 

system vulnerabilities. As cyber threats continue to 

evolve and become more sophisticated, the need 

for a testing framework that can dynamically adapt 

to new attack techniques and defensive 

countermeasures becomes increasingly important. 

The APTM provides the flexibility and intelligence 

required to simulate realistic adversarial behavior, 

enabling defenders to test not only the technical 

resilience of their systems but also the adaptability 

of their detection and response strategies. By 

modeling the attacker as an agent capable of 

learning, adapting, and balancing risks, APTM 

supports the development of more robust security 

postures and better prepares organizations for 

advanced, persistent threats in an ever-evolving 

threat landscape. 
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